

Test Report

Security Audit QGIS Server and QWC2

Version 1.0

Date 13.10.2025

Customer National Cyber Security Centre NCSC

Classification Public

Table of Contents

1 Management Summary .. 4
1.1 Introduction and Context ... 4
1.2 Assessment Summary .. 5

2 Scope, Findings and Recommendations ..6
2.1 Overview of Tested Components .. 6
2.2 People Involved ... 7
2.3 Project Timeline.. 7
2.4 Penetration Test Details ... 8

2.4.1 Scope and Tested Version .. 8
2.4.2 Test Conditions ... 9
2.4.3 Findings and Recommendations .. 11

3 Appendix .. 16
3.1 Risk Categories ... 16

3.1.1 Calculation of Risk Categories ... 16
3.1.2 Probability ... 16
3.1.3 Impact .. 17

3.2 Definitions for Test Conditions ... 18
3.2.1 Attack Vector ... 18
3.2.2 Testing Approach ... 18
3.2.3 Access permissions ... 19
3.2.4 Degree of Automation .. 19
3.2.5 Allowlisting ... 19
3.2.6 Timeboxed ... 20

Version Date Description Author

1.0 13.10.2025 Publication Brian Ceccato

0.4 30.09.2025 Update regarding fix for H2 and CVE IDs Fabio Zuber

0.3 12.09.2025 Draft for publication Fabio Zuber

0.2 26.06.2025 Draft of full report (for review by NCSC) Fabio Zuber

0.1 03.06.2025 Preliminary report for disclosure to QGIS
security team

Fabio Zuber

National Test Institute for Cybersecurity NTC
Baarerstrasse 53
6300 Zug

+41 41 317 00 11

office@ntc.swiss
www.ntc.swiss

Fabio Zuber
Penetration Tester

+41 41 317 00 14

fabio.zuber@ntc.swiss

Test Report- Management Summary 4

1 Management Summary

1.1 Introduction and Context

This report presents the results of the security assessment of QGIS Server and QWC2
carried out by the Swiss National Test Institute for Cybersecurity NTC on behalf of the
Swiss National Cyber Security Centre (NCSC).

The NCSC selected the QGIS project for this security assessment based on the results of
a survey conducted from January 14 to February 28, 2025. The survey was published on
the Cyber Security Hub and invited federal, cantonal, and municipal authorities to
propose open source software for testing. QGIS was chosen due to its widespread use
across all three administrative levels and its role in processing potentially sensitive data.

QGIS is a powerful open source Geographic Information System (GIS) widely adopted by
the Swiss public administration. Government organizations use it to visualize and analyze
spatial data for essential tasks like urban planning, managing public infrastructure, and
conducting environmental assessments.

The QGIS Server acts as a backend for collaborating with others on GIS data. QWC2
(QGIS Web Client), on the other hand, is a web application for editing map data. There is
also a desktop client for QGIS that is commonly used by public administrations. However,
this analysis focused on the server and web front end because they are more at risk since
they are typically exposed directly to the internet.

The NTC performed a security analysis of QGIS Server and QWC2 between April 2025 and
Mai 2025. As part of the tests, the source code was reviewed for potential security issues.
This analysis was conducted using manual and automated testing procedures. The main
goals of the analysis were to ensure that sensitive data cannot be accessed by
unauthorized parties and that data manipulation is not possible without proper
authorization.

The QGIS development community was informed in advance by the NCSC about the
upcoming analysis. During the testing period, the QGIS maintainers, the NTC and the
NCSC worked together and shared information, giving the NTC valuable technical
insights.
All risks identified in the analysis were reported by the NCSC to the QGIS security team
and addressed subsequently. By the time of publication, all reported vulnerabilities were
fixed and releases to fix the vulnerabilities were made available.

https://www.ncsc.admin.ch/ncsc/de/home/meldepflicht/informationen-csh.html

Test Report- Management Summary 5

1.2 Assessment Summary

The penetration test confirmed the strong security posture of the QGIS server. Within the
testing timeframe, no directly exploitable vulnerabilities were identified.

The only identified security issue has a low criticality and was found by analyzing the
source code. QGIS's dependencies do not explicitly specify which version is expected to
be installed. This may lead to unpredictable build failures and security issues in the event
of a supply chain attack.

Five potential security issues were identified in the Web UI called “QWC2”. Two of these
vulnerabilities, both categorized as “High”, allow attackers to insert arbitrary JavaScript
code, which would then be executed when another user accesses the affected part of the
application. Such cross-site scripting (XSS) vulnerabilities are typically exploited to steal
user sessions, especially those with elevated permissions. However, since attackers would
require a valid account and editing permissions to exploit these vulnerabilities, the
likelihood of a real-world attack is reduced.

The distribution of findings between QGIS Server and QWC2 is illustrated in Figure 1.

Figure 1: Distribution of security issues by component

In addition to the aforementioned XSS vulnerabilities, suboptimal cookie security
attributes were observed in the QWC2 admin UI. While this does not constitute a
vulnerability in itself, a more secure default configuration is recommended.

All details about the identified risks and recommendations can be found in Chapter 2.4.

The QGIS team promptly addressed the reported risks and issued fixes where required.
Users should ensure they are running the latest stable versions of QGIS and QWC2.

We want to thank the NCSC and the QGIS security team for their professional handling
of these issues and their continued efforts in strengthening the security of the open
source ecosystem.

2 2

1

1QWC2

QGIS Server

Critical High Medium Low Info

Test Report- Scope, Findings and Recommendations 6

2 Scope, Findings and Recommendations

2.1 Overview of Tested Components

The NTC conducted a security assessment of QGIS to identify potential vulnerabilities. The
testing scope included both the QGIS Server and the QWC2 web application. QWC2 is
one of many frontend applications used to visualize and interact with GIS data. It was
included in the scope because it is used by multiple cantons, is fully open source and is
provided by the same community that develops QGIS Server.

The solution was tested from April 1 to May 30, 2025, using both manual and automated
methods. The total effort was approximately 20 person-days, conducted by two testing
specialists.

The dynamic testing was primarily performed manually by experienced security experts
using tools such as the Burp Suite Proxy, various browser extensions, and a variety of
specialized tools. Where applicable and appropriate, testing followed the OWASP
Application Security Verification Standard (ASVS). In addition, automated analysis tools
such as the Burp Suite Active Scanner were used where appropriate to efficiently identify
known vulnerabilities and misconfigurations.

All dynamic tests were conducted using a local installation of QGIS Server and QWC2. The
NTC followed the official quick start guide to run the services locally using Docker. All tests
were conducted using the default settings and no modifications to security-related
configurations.

The static source code analysis was performed on the security-relevant code sections.
This analysis focused on identifying vulnerabilities, rather than enforcing coding best
practices, verifying documentation completeness or optimizing code efficiency. Testing
was performed using a combination of automated and manual checks. Automated
testing was carried out using scanners such as SonarQube, which efficiently identify known
vulnerabilities and coding errors.

Since QGIS Server and the QGIS desktop client are developed in a common git repository1,
the source code analysis was performed on that code base, focusing on the shared logic
and the server-specific components. The code that is used only for the desktop client was
not part of this analysis.

1 https://github.com/qgis/QGIS

https://qwc-services.github.io/master/QuickStart/

Test Report- Scope, Findings and Recommendations 7

2.2 People Involved

Rolle Persons

Project lead NCSC Roger Knoepfel

Project Lead NTC Fabio Zuber

Testing Patrik Fabian, Fabio Zuber

Quality Assurance Tobias Castagna

2.3 Project Timeline

Task Date Persons involved

Kick-off Meeting OSS Pilot Project 14.11.2025 NCSC Vulnerability Management Team

NTC:
Tobias Castagna, Dilip Many, Fabio Zuber

Testing and code analysis 01.04.2025 –
30.05.2025

Patrik Fabian, Fabio Zuber

Handover preliminary vulnerability
report to QGIS security team

05.06.2025 NCSC Vulnerability Management Team

Correction / Clarification for
QWC2 Registration finding

31.07.2025 Fabio Zuber

Final report 12.09.2025 Tobias Castagna, Andreas Leisibach, Dilip
Many, Fabio Zuber

Last fixes implemented and
release made available

30.09.2025 QGIS Maintainers

CVE IDs reserved for CVE-2025-
11183 and CVE-2025-11184

30.09.2025 NCSC Vulnerability Management Team

Publication of report and CVEs 13.10.2025 NCSC Vulnerability Management Team

Test Report - Scope, Findings and Recommendations 8

2.4 Penetration Test Details
2.4.1 Scope and Tested Version

The tests were carried out between April 1 to May 30, 2025. The table below lists the tested components and their tested version. The code
analysis and dynamic security testing focused on code that is used to run QGIS Server and QWC2. Code used for quality assurance, testing
and automation was excluded from the analysis.

Project Name Source Repository Tested Version Remarks

QGIS https://github.com/qgis/QGIS final-3_42_3 (e84bda9) Used for source code review

This analysis focused on the server components.
The desktop client was not part of this analysis.

QWC2 https://github.com/qgis/qwc2 v2025.11-lts (df80336) Used for Source Code Review

qwc-docker https://github.com/qwc-services/qwc-
docker

master (c6203bf) Docker compose setup used for dynamic testing.
Following the quick start guide from:
https://qwc-
services.github.io/master/QuickStart/

https://qwc-services.github.io/master/QuickStart/
https://qwc-services.github.io/master/QuickStart/

Test Report - Scope, Findings and Recommendations 9

2.4.2 Test Conditions

The security audit took place under these conditions:

 No additional WAF or firewall
was used during the tests.

No security settings were
disabled in the app settings.

Testing was done in ~20
person days and done by two
test experts.

The available time was
invested in areas deemed
most impactful.

Further information about the graphic and the interpretation of the given values can be found in Appendix 3.2, Definitions for Test Conditions.

Attack Vector

Internet

Local Network

Local Access

Physical Access

Testing Approach

Blackbox

Greybox

Whitebox

Access Rights

No

User

Administrator

Degree of Automation

Fully Automated

Partly Automated

Manual

Allowlisting

No

Yes

Timeboxed

No

Yes

T

e
st

 D
e

p
th

Test Report - Scope, Findings and Recommendations 10

The following tools were used to test QGIS Server and QWC2.

Name Version Reference Remarks / Usage

BurpSuite Professional 2025.2.3 https://portswigger.net/burp/pro Dynamic Testing: Web app and API

SonarQube Developer Edition 10.8 https://www.sonarsource.com/products/sonarqube/ Static code analysis

Snyk.io - https://snyk.io/ Static code analysis

Dalfox v2.9.3 https://github.com/hahwul/dalfox XSS Scanner

Gitleaks 8.21.2 https://github.com/gitleaks/gitleaks Secret Scanning in source code

Docker / Docker Compose 23.0.1 https://docs.docker.com/get-started/get-docker/ Runtime and debug environment

AFLplusplus 4.31c https://aflplus.plus/ Dynamic Testing: Fuzzing

https://portswigger.net/burp/pro
https://www.sonarsource.com/products/sonarqube/
https://snyk.io/
https://github.com/gitleaks/gitleaks

Test Report - Scope, Findings and Recommendations 11

2.4.3 Findings and Recommendations
2.4.3.1 Findings in QGIS Server

These findings were identified in the QGIS Server:

Component Reference Finding Recommendations Fixed
Versions

Implemented Fix

QGIS Source
Code

L1 - Low “Unpinned” Versions of Dependencies Used

QGIS relies on external dependencies in their code
base. It was found that for both the C++ and Python
dependencies, only the name of a dependency is
specified. This means that the latest version of a
specified package is used.

The C++ dependencies are specified in
src/vcpkg/vcpkg.json and only specify a minimal
version (baseline) for two package sources. All other
dependencies do not specify a version that should be
installed.

The Python dependencies defined in the
requirements.txt only name the dependencies
used without specifying which version should be
installed.

Using unpinned dependency versions can lead to
unpredictable build failures, introduce breaking
changes, or inadvertently incorporate new security
vulnerabilities when dependencies are updated
without verification. This also increases the risk of
supply chain attacks.

To mitigate the risks
associated with unpinned
dependency versions, it is
recommended to implement
the following measures:

• Use exact versions for all
dependencies in your
project's manifest files
(vckg.json and
requirements.txt)

• If supported by the
dependency manager,
use a “lock” mechanism
that uses a hash value to
ensure the installed
dependency matches
the one specified in a
lock file.

• Regularly review and
update dependencies:
i.e. don't "pin and forget."

N/A No changes
necessary, as
VCKG already
pins the versions
automatically.

Test Report - Scope, Findings and Recommendations 12

2.4.3.2 Findings in QWC2

These findings were identified in QWC2:

Component Reference Finding Recommendations Fixed
Versions

Implemented Fix

QWC2

H1 – High

CVE-2025-
11183

Stored Cross-Site Scripting Vulnerability in
Attribute Table

There is a Cross-Site Scripting (XSS) in the
attribute table used to edit points and lines

1. Ensure you are logged in with a user that
has edit permissions for the present
attributes in the attributes table (Lines,
Points and Polygons, etc).

2. Open the editing dialog via Burger Menu
(top right) > Map Tools > Editing

3. Draw an arbitrary line (double click to finish
line)

4. Open the attribute table by clicking the
table button in the editing dialog

5. Edit the Name (or Description) of the line to
this value:

6. An alert message with the text 123 will pop
up confirming the XSS vulnerability

This allows adversaries with editing capabilities
of an attribute layer to place and then execute
arbitrary JavaScript code. This code will later be
run when other users display the attribute layer.

XSS Attacks are often used to steal credentials
or login tokens of other users.

The following recommendations
are suggested to reduce the risk
of XSS vulnerabilities:

• Use the framework's built-in
templating functionalities to
securely render content

• Validate and sanitize all
inputs on the backend

• Use a CSP to disallow in-line
JavaScript execution

• Use context specific output
encoding before rendering it

Additional tips how XSS can be
prevented can be found here:
https://cheatsheetseries.owasp.
org/cheatsheets/Cross_Site_Scri
pting_Prevention_Cheat_Sheet.ht
ml

2025.08.14 User input is now
sanitized before
rendering it.

All users are
encouraged to
update to the
latest version.

https://nvd.nist.gov/vuln/detail/CVE-2025-11183
https://nvd.nist.gov/vuln/detail/CVE-2025-11183
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Test Report - Scope, Findings and Recommendations 13

QWC2
Registration

H2 – High

CVE-2025-
11184

Stored Cross-Site Scripting Vulnerability in the
Registration Module

There is a potential Cross-Site Scripting (XSS) in
the registration module via registrable groups.

1. Ensure you are logged in with a user that
has permission to make a registerable
group.

2. Create a registrable group with the
following description:
<script>alert(document.domain)</scr
ipt>

3. Navigate to
http://localhost:8088/registration/
register

4. An alert message with the domain name
will pop up confirming the XSS vulnerability

This allows adversaries with editing capabilities
of registrable groups to place scripts that will
execute arbitrary JavaScript code. This code will
later be run when other users display the
registration page. XSS Attacks are often used to
steal credentials or login tokens of other users.

The following recommendations
are suggested to reduce the risk
of XSS vulnerabilities:

• Use the framework's built-in
templating functionalities to
securely render content

• Validate and sanitize all
inputs on the backend

• Use a CSP to disallow in-line
JavaScript execution

• Use context specific output
encoding before rendering it

Additional tips how XSS can be
prevented can be found here:
https://cheatsheetseries.owasp.
org/cheatsheets/Cross_Site_Scri
pting_Prevention_Cheat_Sheet.ht
ml

2025.09.30 User input is now
encoded before
rendering it.

All users are
encouraged to
update to the
latest version.

https://nvd.nist.gov/vuln/detail/CVE-2025-11184
https://nvd.nist.gov/vuln/detail/CVE-2025-11184
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Test Report - Scope, Findings and Recommendations 14

QWC2 Source
Code

L2 – Low Bing API Key in Commit History

A Bing API token can be extracted from the Git
history. The token is no longer part of the current
source code, but it must have been committed
at some point in the past and then removed. The
token was introduced in the commit 833e30f
and can also be found here:
https://github.com/qgis/qwc2/blob/833e30fa
0a59e6595feef2ad55b1f257218ba233/localConfi
g.json#L5

Note: The NTC did not verify the validity or
permissions of this token. Exposed API tokens
can potentially be used to access confidential
data or consume cloud resources at the cost of
the original owner.

Here are several
recommendations aimed at
minimizing the risk of exposed
tokens:

• Revoke the token if it is still
valid

• Monitor access and the
usage of resources on the
backend

• Secrets should not be
hardcoded in code
repositories or CI/CD
configuration files. Employ
tools such as gitleaks or git-
secrets to detect such
secrets.

OWASP has extensive
documentation on Secrets
Management:
https://cheatsheetseries.owasp.
org/cheatsheets/Secrets_Mana
gement_Cheat_Sheet.html

N/A The Bing API key
is obsolete /
revoked.

https://github.com/qgis/qwc2/blob/833e30fa0a59e6595feef2ad55b1f257218ba233/localConfig.json#L5
https://github.com/qgis/qwc2/blob/833e30fa0a59e6595feef2ad55b1f257218ba233/localConfig.json#L5
https://github.com/qgis/qwc2/blob/833e30fa0a59e6595feef2ad55b1f257218ba233/localConfig.json#L5
https://github.com/gitleaks/gitleaks
https://github.com/awslabs/git-secrets
https://github.com/awslabs/git-secrets
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html

Test Report - Scope, Findings and Recommendations 15

QWC2 Admin L3 - Low CSRF token cookie without secure flags

The CSRF token is transmitted via a cookie, but
the cookie does not have the secure flag set.

If the Secure flag is not set, the cookie can be
transmitted over unencrypted HTTP
connections. This exposes it to interception over
insecure networks (e.g., public Wi-Fi).

Even though CSRF tokens are a mitigation
mechanism, improperly configured cookie
attributes can weaken the overall protection
and introduce new attack surfaces.

The following measures are
recommended to address the
issue:

• Avoid storing CSRF tokens in
cookies unless necessary. As
an alternative, a hidden
input could be used for
example. More details on
this can be found from
OWASP.

• Set the Secure flag on the
CSRF token cookie to ensure
transmission only over HTTPS

• Enforce HTTPS across the
entire application to ensure
the Secure flag is effective

N/A No patch is
necessary as
this can already
be enabled
using the
JWT_COOKIE_SE
CURE

flag in the
docker compose
file.

Users are
encouraged to
set the flag to
true.

QWC2 Source
Code

I1 - Info Vulnerable Version of Axios Used

The tested version of QWC2 uses a version of
Axios that is vulnerable to Server-Side Request
Forgery. As specified in the yarn.lock file, the
version 1.8.1 of the library is used.

An initial review indicates that QWC2 is not
affected by this vulnerability. The issue
specifically targets axios clients (created using
axios.create), for which no instances were
found in the code base.

More details about the vulnerability can be
found here:
https://github.com/axios/axios/security/advis
ories/GHSA-jr5f-v2jv-69x6

To ensure that future code
changes do not introduce
unforeseen vulnerabilities, it is
recommended to update to an
Axios version >=1.8.2.

v2025.08.14 Dependency
was updated.

All users are
encouraged to
update to the
latest version of
QWC2.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#transmissing-csrf-tokens-in-synchronized-patterns
https://axios-http.com/docs/intro
https://github.com/axios/axios/security/advisories/GHSA-jr5f-v2jv-69x6
https://github.com/axios/axios/security/advisories/GHSA-jr5f-v2jv-69x6

Test Report - Appendix 16

3 Appendix

3.1 Risk Categories

The findings in this report can be classified into these categories.

• Critical

• High

• Medium

• Low

• Info

3.1.1 Calculation of Risk Categories

To determine the applicable risk category, the following slightly simplified but widely used
and practical formula is applied:

• Risk = Probability * Impact

Im
p

a
c

t
/

 D
a

m
a

g
e

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Probability

Findings that are not directly associated with a risk but whose recommended measures
contribute to increasing the system's security level are categorized as "Info".

3.1.2 Probability

The likelihood of occurrence is divided into three categories: High, Medium, and Low, and
takes into account the following parameters from the DREAD Risk Assessment Model:

• Exploitability – How much effort is required to execute the attack?

• Reproducibility – How easy is it to replicate the attack?

• Discoverability – How easy is it to identify the vulnerability?

Test Report - Appendix 17

3.1.3 Impact

The impact is divided into three categories: High, Medium, and Low, and takes into
account the following parameters from the DREAD Risk Assessment Model:

• Damage - How severe would a successful attack be?

• Affected users– How many users would be affected?

Test Report - Appendix 18

3.2 Definitions for Test Conditions

The graphic displaying the test conditions provides information about the conditions
under which the tests were conducted. The individual categories and possible values are
described below.

3.2.1 Attack Vector

The attack vector describes the method through which the tests were conducted /
simulated.

• Internet
The tests were conducted over the internet. It must be assumed that the identified
vulnerabilities can be exploited by any attacker with internet access.

• Local Network
The tests were conducted over the local network. This network access is typically
used by employees, but also by partner companies, suppliers, or other insiders.

• Local Access
For the tests, local access to the test system was provided to allow interaction not
only with the network-exposed services but also with the operating system. Access
is typically provided via SSH, Remote Desktop, Citrix, etc., and requires valid
credentials.

• Physical Access
During the tests, physical access to the system was also available. This allowed
interaction not only over the network but also through other physical interfaces. For
example, access to debugging ports, removal of memory chips or hard drives,
replacement of SIM cards, etc., would be possible

3.2.2 Testing Approach

The approach describes the level of knowledge the testers have about the test system.

• Blackbox
The testers have no prior information about the security policies, architecture,
configuration, source code, etc., of the system being tested.

• Greybox
The testers receive some preliminary information about the system being tested and
have the option to request additional details from the system operator if needed.

• Whitebox
The testers have access to all security-relevant information, including
documentation, configurations, source code, etc.

Test Report - Appendix 19

3.2.3 Access permissions

The Access permissions describe the privileges granted to the testers.

• Unprivileged
No credentials were provided, and the tests were conducted without user
credentials or special permissions.

• User
The credentials of a standard user without elevated privileges were used. The
credentials were either provided by the operator or generated through a self-
registration process.

• Administrator
Credentials with elevated privileges (e.g., those of an administrator) were used. This
allowed testing of functionalities that are not accessible to a standard user.

Note: Even if credentials with specific privileges are provided, tests are also conducted without
these privileges or with reduced privileges. For example, it is assessed whether administrative
functions can be used by standard or unprivileged users as well.

3.2.4 Degree of Automation

The degree of automation describes the balance between automated and manual
testing.

• Fully automated
The tests are primarily conducted in an automated manner using scanning tools
such as Nessus. The results are manually verified to identify and eliminate false
positives. However, complex vulnerabilities or those requiring an understanding of
the application's logic may not always be detected.

• Partly automated
The tests are conducted in an automated way and are completed by manual
testing in areas deemed beneficial, based on the experience of the testers.

• Manual
The tests are predominantly conducted manually by experienced security
specialists. Where appropriate, automated tools are also used to optimize
resources and leverage the testers' expertise in areas where automated tools reach
their limitations.

3.2.5 Allowlisting

The allowlisting flag documents whether certain security measures were disabled or
adjusted for the execution of the tests. This may be necessary in certain situations to
complete the tests within a reasonable timeframe or to achieve a higher depth of testing:

• Yes
Some security measures were disabled or adjusted in coordination with the
operators. The details are provided in the comments.

• No
No security measures were disabled.

Test Report - Appendix 20

3.2.6 Timeboxed

The Timeboxing flag indicates whether intentionally less time was allocated for the tests
than would be required for a complete assessment.

• Yes
The test is conducted using a timeboxed approach to achieve an optimal cost-
benefit ratio. The tests are performed within a limited time frame and focus on the
most likely security vulnerabilities ("low-hanging fruits"). This approach is particularly
suitable for target systems where a security assessment is important, but resources
are limited.

• No
The test is conducted to the extent recommended by NTC to allow for a
comprehensive assessment.

	1 Management Summary
	1.1 Introduction and Context
	1.2 Assessment Summary

	2 Scope, Findings and Recommendations
	2.1 Overview of Tested Components
	2.2 People Involved
	2.3 Project Timeline
	2.4 Penetration Test Details
	2.4.1 Scope and Tested Version
	2.4.2 Test Conditions
	2.4.3 Findings and Recommendations
	2.4.3.1 Findings in QGIS Server
	2.4.3.2 Findings in QWC2

	3 Appendix
	3.1 Risk Categories
	3.1.1 Calculation of Risk Categories
	3.1.2 Probability
	3.1.3 Impact

	3.2 Definitions for Test Conditions
	3.2.1 Attack Vector
	3.2.2 Testing Approach
	3.2.3 Access permissions
	3.2.4 Degree of Automation
	3.2.5 Allowlisting
	3.2.6 Timeboxed

